
Welcome to Jozi ruby

(Building for the web)

(AI Fanatic)

(Community support)

This talk is about CI,
namely, Computational
Intelligence – the study

of adaptive
mechanisms to enable
or facilitate intelligent
behaviour in complex

and changing
environments. These
mechanisms include

those CI paradigms
that exhibit an ability to
learn or adapt to new

situations, to
generalise, abstract,

discover and associate.

Computational
Intelligence

AI

Deterministic
Stochastic

Weak AI
“specific”

Strong AI
“general”

New era AI
“CI”

Old era AI
“brute force”

EC

FS
SI

AIS
NN

Evolutionary
Computation Swarm

Intelligence

Neural
Networks

Artificial
Immune
Systems

Fuzzy
Systems

4

Deterministic Stochastic
K

n
o
w

le
d

g
e

N
o

 K
n

o
w

le
d

g
e

1 2

3

1. Search Space ‘fitness landscape’

2. Candidate Solution

3. Fitness Function (heuristic)

0. Global Search

concepts

HELLO WORLD
FOR AI

The Problem

Write a program that will print “hello world” to

standard out in these four cases:

!

1. Deterministic algorithm with knowledge (informed)

2. Stochastic algorithm with knowledge (informed)

3. Deterministic algorithm with no knowledge (uninformed)

4. Stochastic algorithm with no knowledge (uninformed)

Deterministic & Knowledge

puts "hello world"!

 1

Stochastic & Knowledge

if rand() < 0.95 # 5% failure rate!
 puts "hello world"!
else!
 fail "a statistically unlikely death"!
end!

 2

No Knowledge

Write a program that will

print something to

standard out, without

knowing exactly what it is

that should be outputted…

(uninformed)

No Knowledge
(uninformed)

No Knowledge
(uninformed)

Define: (3) heuristic

Computing proceeding to a solution by trial and

error or by rules that are only loosely defined.

No Knowledge
(uninformed)

Define: (3) fitness function

A single real value that reflects to some accuracy

how close a solution is from being correct

Sample solutions

"hello steve" #=> half way there!
"hello Mr. T" #=> half way there!
" ello world" #=> almost there!!

No Knowledge
(uninformed)

Lexical Distance

ALPHABET = ('a'..'z').to_a + [" "]!
!
def distance a, b!
 return nil unless a.length == b.length!
 a.chars.each_index.inject(0) do |sum, i|!
 sum + char_distance(a[i], b[i])!
 end!
end!
!
def char_distance ai, bi!
 ia = ALPHABET.index(ai)!
 ib = ALPHABET.index(bi)!
 ia = (ia - ALPHABET.length).abs if ia > (ALPHABET.length/2)!
 ib = (ib - ALPHABET.length).abs if ib > (ALPHABET.length/2)!
 (ia - ib).abs!
end

"hello steve" #=> 21!
"hello mr t" #=> 34!
" ello world" #=> 6!
"iello world" #=> 1!
"hello world" #=> 0

(2) Candidate solution

(x,y,z)

Deterministic & No Knowledge 3

xy

z

(‘h’,’e’,’l’)

’e’
’h’

’l’

(1) Search space

Deterministic & No Knowledge 3

“Arrow solution”

require_relative 'distance'!
D = domain (all possible values)!
D = ALPHA!
"hello world".length = 11 chars!
best = "aaaaaaaaaaa"!
D.each do |a|!
 D.each do |b|!
 D.each do |c|!
 D.each do |d|!
 D.each do |e|!
 D.each do |f|!
 D.each do |g|!
 D.each do |h|!
 D.each do |i|!
 D.each do |j| ##!
 D.each do |k| ###!
 candidate = "#{a}#{b}#{c}#{d}#{e}#{f}#{g}#{h}#{i}#{j}#{k}"!
 best = distance(candidate) < distance(best) ? candidate : best!
 puts "solution = #{best}" and exit 0 if distance(best) == 0!
 end ###!
 end ##!
 end!
 end!
 end!
 end!
 end!
 end!
 end!
 end!
end!

Deterministic & No Knowledge 3

Problem: takes far too long for a simple hello world, imagine
something that required actual computing power…

Combinations = 27^11 = 5.5590606e+15 for

brute force

!

Combinations = 27*11 = 297 for optimising each

dimension independently (since the problem is

‘separable’)

Stochastic & No Knowledge 4

Clearly, we need an intelligent solution…

(0) Global Search!!!!!!!!!!!!!!!!!!!

RECAP

1. Search Space ‘fitness landscape’

2. Candidate Solution

3. Fitness Function (heuristic)

0. Global Search

concepts

Evolving a solution to
hello world

with natural selection

“The sequencing is just enormously complex”

~ Kevin

“But, didn’t you write it?”

~ Sam

“Ha, some of it. The rest is just, beyond me”

~ Kevin

EC

FS
SI

AIS
NN

Evolutionary
Computation Swarm

Intelligence

Neural
Networks

Artificial
Immune
Systems

Fuzzy
Systems

GA: “Genetic Algorithm”

EC

Algorithmic model

developed to simulate

biological evolution.

Jean-Baptiste Lamarck’s theory of evolution was

that of heredity, i.e. the inheritance of acquired

traits. The main idea is that individuals adapt

during their lifetimes, and transmit their traits to

their offspring

Charles Darwin ~ Individuals with the “best”

characteristics (traits/genes) are more likely to

survive and to reproduce, and those characteristics

will be passed on to their offspring. These desirable

characteristics are inherited by the following

generations, and (over time) become dominant

among the population.

Genetic Algorithm Overview

“hllew ordjg”

“lpainbsy is”

“heldnn hjao”

“gn oojafh o”

“woolnhloea ”

Po
pula

tio
n

“hllew ordjg”

“lpainbsy is”

“heldnn hjao”
“gn oojafh o”

“woolnhloea ”

re
c
o
m

b
in

e

“hllewgwooln”

“lpan hjy is”
“hnbsoojaeldn”

“gn aoifh o”
“ ordjhloea ”

“hllew ordjg”

“lpainbsy is”

“heldnn hjao”
“gn oojafh o”

“woolnhloea ”

“holfwgxoono”

“lpam ijy is”
“hnarnojaeoen”

“gn aoifh o”
“ oqejhloez ”

m
u
ta

te
“heldnn hjao”

“woolnhloea ”

“holfwgxoono”

“hnarnojaeoen”

“gn aoifh o”

se
le

c
tio

n

Genetic Algorithm Overview

@individuals = array_of_individuals!
generations.times do |generation|!
 # Calculate fitness!
 @individuals.each{ |individual| individual.calc_fitness }!
!
 # Recombine (copulate)!
 offspring = @crossover_strategy.crossover(@individuals)!
!
 # Mutate offspring!
 mutated_offspring = @mutation_strategy.mutate(offspring, problem)!
!
 # Select next generation!
 generation_pool = (@individuals + mutated_offspring)!
 new_population = @selection_strategy.select(generation_pool, @population)!
!
 # Ensure elitism!
 @individuals = elitism(new_population, generation_pool)!
end!
!
return best_solution_found!
!

Crossover / Recombination

h e n n o x o r d l

0 1 1 0 1 0 0 0 1 1 0

g n l b y b w r o l d

h n l n y x o o l l

+

=

+

=

“Heredity”

Mutation

h e n n o x o r d l

0 1 -1 0 1 0 0 0 -1 -1 0
+

=

h f m n p x o q c l

“Diversity”

Selection

def select entities, population!
 # Rank by fitness!
 fitnesses = entities.map{ |e| e.fitness }!
 sum = fitnesses.reduce(:+).to_f!
 normalized_ranks = ranks.map{ |r| r.to_f/sum }!
!
 # Calculate, form array of tuples to keep a reference to rank & entity!
 tuples = []!
 entities.each_with_index{ |e, i| tuples << [e, normalized_ranks[i]] }!
 tuples.sort!{ |a,b| a[1] <=> b[1] }!
!
 # Select probabilistically based on rank!
 size = population!
 selected = []!
 while selected.length < size!
 tuples.each_with_index do |tuple, index|!
 if rand() < tuple[1]!
 selected << tuples[index][0]!
 end!
 end!
 end!
 selected!
end!

Elitism

badassoftheweek.com

Make sure the best

individual(s) survive to the

next generation

http://badassoftheweek.com

DEMO
Questions

Break

Diagnosing Cancer
with NN & PSO

Artificial
Neural

Networks

~10b neurons

each connected

to thousands

others

via synapse

Synapse are
elastic

Learn by
thickening

Excited /

Inhibited

States

EC

FS
SI

AIS
NN

Evolutionary
Computation Swarm

Intelligence

Neural
Networks

Artificial
Immune
Systems

Fuzzy
Systems

NN

Neural
Networks

FFNN: “Feed Forward Neural Network”

Artificial model developed to

approximate the generalization

of knowledge & discovery.

Classification Problem

Attr1 Attr2 … AttrN Class
17.99 10.38 1.78 B
0.5 595.9 0.03 M

122.8 103.2 9.2 M
9.34 90 2.5 B

…

Input vector

“Relevant data”

Classfication

“Target vector”

Each row is 1

persons tissue

measurements

Classification Problem Training

17.99 10.38 1.78 B B

Output Target

0.5 595.9 0.03 B M

122.8 103.2 9.2 B M

9.34 90 2.5 M B

7.69 1.38 2.33 B M

Classification Problem Evaluation

Attr1 Attr2 … AttrN
17.99 10.38 1.78

(Malignant or
Benign)FNN: Rn -> {M,B}

Class
B

The Perceptron

f(net)

w1

w2

w3

w4

x1

x2

x3

x4

Activation strength

f(net) = f(x1w1 + x2w2 + x3w3 + x4w4)

f is an activation function:
[step, sigmoid, h tan, linear]

sigmoid:

The Perceptron: OR

f(net)

w1

w2

x1

x2

x x f(net)

0 0 0

0 1 1

1 0 1

1 1 1

Guess values for
x1 and x2…

(Step activation)

f(net) = f(x1w1 + x2w2 + x3w3 + x4w4)

The Perceptron: OR & XOR

x x f(net)

0 0 0

0 1 1

1 0 1

1 1 1

x x f(net)

0 0 0

0 1 1

1 0 1

1 1 0

1

0
0 1

1

0
0 1

OR: XOR:

The 3 Layer FFNN

We can compose Perceptrons (which have
activation functions) to create a higher order

function from them that has more
“information capacity”.

The 3 Layer FFNN Output

FNN: Rn -> {M,B}

!
meaning…

!
output = fout(net)

 = fout(sum(wfmiddle(net)))

 = fout(sum(wfmiddle(sum(vz))))

w
vz

error = patterns.each do |pattern|

 sum(difference(target,output))

end / patterns.length

Output Fitness
(accuracy)

How do we train it?

1. Gradient descent

2. Simulated annealing

3. RPROP

4. Global search? PSO!

Training our NN
with A PSO

Particle
Swarm

Optimization

Simple individuals,
working socially to

exhibit complex,
emergent,
behaviour

EC

FS
SI

AIS
NN

Evolutionary
Computation Swarm

Intelligence

Neural
Networks

Artificial
Immune
Systems

Fuzzy
Systems

SI

Swarm
Intelligence

!
PSO: “Particle Swarm Optimizer”

Algorithmic model

developed to simulate

complex emergent

behaviour of swarms.

PSO Objects

Particle:

velocity

position

personal best position

inertia

social_weight

cognitive_weight

(dimensions)

Swarm:

[particle]

global best position

floats

PSO Algorithm

initialize_swarm!
@iterations.times do |i|!
 @swarm.each do |particle|!
 particle.update_velocity!
 particle.update_position!
 particle.update_pbest!
 update_gbest particle!
 end!
end

PSO Algorithm: Velocity & Position Updates

Position update

position = position + v

Velocity update

v = wv + c1r1(pbest - position)
 + c2r2(gbest - position)

Ones Problem

Use a PSO to generate a

vector of float values where

each value equals exactly 1

The solution: [1.0, 1.0, 1.0, 1.0, 1.0]

DEMO
Questions

Bringing it together

Swarm

Update
personal best

How well does
it classify?

set solution vector
as weights in NN

report fitness to
update gbest in

the swarm

DEMO
Questions

fin.

